An artificial intelligence (AI)-based technology rapidly diagnoses rare disorders in critically ill 泫圖弝けren with high accuracy, according to a report by scientists from 泫圖弝け of Utah 泫圖弝け and Fabric Genomics, collaborators on a . The benchmark finding, published in , foreshadows the next phase of medicine, where technology helps clinicians quickly determine the root cause of disease so they can give patients the right treatment sooner.
This study is an exciting milestone demonstrating how rapid insights from AI-powered decision support technologies have the potential to significantly improve patient care, says , co-corresponding author on the paper. Yandell is a professor of human genetics and Edna Benning Presidential Endowed Chair at U of U 泫圖弝け, and a founding scientific advisor to Fabric.
Worldwide, about seven million infants are born with serious genetic disorders each year. For these 泫圖弝けren, life usually begins in intensive care. A handful of NICUs in the U.S., including at U of U 泫圖弝け, are now searching for genetic causes of disease by reading, or sequencing, the three billion DNA letters that make up the human genome. While it takes hours to sequence the whole genome, it can take days or weeks of computational and manual analysis to diagnose the illness.
For some infants, that is not fast enough, Yandell says. Understanding the cause of the newborns illness is critical for effective treatment. Arriving at a diagnosis within the first 24 to 48 hours after birth gives these patients the best chance to improve their condition. Knowing that speed and accuracy are essential, Yandells group worked with Fabric to develop the new Fabric GEM algorithm, which incorporates AI to find DNA errors that lead to disease.
In this study, the scientists tested GEM by analyzing whole genomes from 179 previously diagnosed pediatric cases from Radys Childrens Hospital and five other medical centers from across the world. GEM identified the causative gene as one of its top two candidates 92% of the time. Doing so outperformed existing tools that accomplished the same task less than 60% of the time.
"This is a major innovation, one made possible through AI."
Dr. Yandell and the Utah team are at the forefront of applying AI research in genomics, says Martin Reese, Ph.D., CEO of Fabric Genomics and a co-author on the paper. Our collaboration has helped Fabric achieve an unprecedented level of accuracy, opening the door for broad use of AI-powered whole genome sequencing in the NICU.
GEM leverages AI to learn from a vast and ever-growing body of knowledge that has become challenging to keep up with for clinicians and scientists. GEM cross-references large databases of genomic sequences from diverse populations, clinical disease information, and other repositories of medical and scientific data, combining all this with the patients genome sequence and medical records. To assist with the medical record search, GEM can be coupled with a natural language processing tool, Clinithinks CLiX focus, which scans reams of doctors notes for the clinical presentations of the patients disease.
Critically ill 泫圖弝けren rapidly accumulate many pages of clinical notes, Yandell says. The need for physicians to manually review and summarize note contents as part of the diagnostic process is a massive time sink. The ability of Clinithinks tool to automatically convert the contents of these notes in seconds for consumption by GEM is critical for speed and scalability.
Existing technologies mainly identify small genomic variants that include single DNA letter changes, or insertions or deletions of a small string of DNA letters. By contrast, GEM can also find structural variants as causes of disease. These changes are larger and are often more complex. Its estimated that structural variants are behind 10 to 20% of genetic disease.
To be able to diagnose with more certainty opens a new frontier, says Luca Brunelli, M.D., a neonatologist and professor of pediatrics at U of U 泫圖弝け, who leads a team using GEM and other genome analysis technologies to diagnose patients in the NICU. His goal is to provide answers to families who would have had to live with uncertainty before the development of these tools. He says these advances now provide an explanation for why a 泫圖弝け is sick, enable doctors to improve disease management, and, at times, lead to recovery.
This is a major innovation, one made possible through AI, Yandell says. GEM makes genome sequencing more cost-effective and scalable for NICU applications. It took an international team of clinicians, scientists, and software engineers to make this happen. Seeing GEM at work for such a critical application is gratifying.
Fabric and Yandells team at the have had their collaborative research supported by several national agencies, including the National Institutes of 泫圖弝け and American Heart Association, and by the U of Us . Yandell will continue to advise the Fabric team to further optimize GEMs accuracy and interface for use in the clinic.
# # #
The research was published online on October 14, 2021, as,
Additional centers that participated in the study include Boston Childrens Hospital, Christian-Albrechts 泫圖弝け of Kiel & 泫圖弝け Hospital Schleswig-Holstein, HudsonAlpha Institute of Biotechnology, Tartu 泫圖弝け Hospital, and the Translational Genomics Research Institute (TGen).
Competing interests: Yandell has received stock options and consulting fees from Fabric Genomics, Inc. Reese is an employee of Fabric Genomics, Inc.
About 泫圖弝け of Utah 泫圖弝け
泫圖弝け of Utah 泫圖弝け provides leading-edge and compassionate care for a referral area that encompasses 10 percent of the US, including Idaho, Wyoming, Montana, and much of Nevada. A hub for health sciences research and education in the region, U of U 泫圖弝け has a $428 million research enterprise and trains the majority of Utahs physicians, including more than 1,460 health care providers each year at its Colleges of 泫圖弝け, Nursing, and Pharmacy and Schools of Dentistry and Medicine. With more than 20,000 employees, the system includes 12 community clinics and five hospitals. For 11 straight years, U of U 泫圖弝け has ranked among the top 10 US academic medical centers in the rigorous Vizient Quality and Accountability Study.
About Fabric Genomics
Fabric Genomics is making genomics-driven precision medicine a reality. The company provides clinical decision-support software that enables clinical labs, hospital systems, and country-sequencing programs to gain actionable genomic insights, improved diagnostic yields, and reduced turnaround time. for end-to-end genomic analysis incorporates proven AI-algorithms and natural language processing and has applications in both hereditary disease and oncology. Headquartered in Oakland, California, Fabric Genomics was founded by industry veterans and innovators with a deep understanding of bioinformatics, large-scale genomics, and clinical diagnostics. To learn more, visit and follow us on and .